
Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 1 of 16 –

Project 1
My First Sony XML Parser

137 Points
v. 7.0

due by 12:30 P.M. ET on Wednesday, 21 February 2007

Refer to Appendix to develop this project on your own machine.

It is recommended that you read the entirety of this document,

well in advance of this project’s deadline, before answering any of its questions.

It is further recommend that you begin answering this document’s questions immediately thereafter.

Immediate completion of this project’s first question is of particular import,
lest there be problems with your registration in this course.

As per the course’s syllabus, extensions on projects will not be granted, except in cases of

emergency. Technical difficulties, mind you, do not constitute emergencies.

Goals.

The goals of this project are to:

• Provide a foundation for all future XML work, for and beyond this course.
• Challenge you to build an XML parser.
• Demonstrate the importance of grammars to parsing.
• Give you hands-on experience with JAXP 1.3’s APIs for SAX 2.0.2 and DOM Level 3.
• Introduce you to an industry-standard parser, Apache’s Xerces-J 2.7.1.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 2 of 16 –

Grading Metric.

Each question is worth the number of points specified parenthetically in line with it.

Your responses to questions requiring exposition will be graded on the basis of their clarity and
correctness. Your responses to questions requiring code will be graded on the following bases.

 Basis Considerations
 Correctness Does your code work in accordance with the question’s guidelines?

 Design Does your code make sense, given the question’s framework? Is your code
written logically, clearly, and succinctly? Is your code efficient?

 Style Is your code rigorously documented with inline comments and Javadoc doc
comments and tags?1 Is it clear from your comments alone how your code
operates? Is your code pretty-printed? Are your data members, methods, and
variables aptly named?

Getting Started.

1. (0 points.) As per the course’s syllabus, obtain an FAS (Faculty of Arts and Sciences)

Computer Account, if you haven’t one already, by visiting the URL below and following the
on-screen instructions.

 https://www.fas.harvard.edu/computing/utilities/activate/

 Not only will this account will provide you with access to FAS’s computer facilities, it will also

provide you with an email address of the form username@fas.harvard.edu, where
username is your FAS username. Additionally, this account will allow you to access via SFTP
and SSH nice.fas.harvard.edu, FAS’s New Linux Computing Environment, use of which
will be required by this and future projects. SFTP and SSH clients are available for various
platforms via the course’s website.

2. (0 points.) Configure your FAS account for use in this course by connecting via SSH to

nice.fas.harvard.edu and executing

 ~cscie259/pub/bin/cscie259setup

 at the prompt. You will then need to log out for the changes to take effect. Upon logging

back in, you can confirm the changes’ effect by executing

 cscie259check

1 With regard to Javadoc, we expect descriptions for all methods and appropriate use of the @param, @return, and
@throws block tags.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 3 of 16 –

 at the prompt. If said command is “not found,” you failed to follow these directions
correctly. ;-) For assistance with the process, simply contact the course’s staff.

 Once your account is configured for CSCI E-259, proceed to execute

 cscie259web

 at the prompt, thereafter following the on-screen instructions for selecting a password for

Web-accessible directories.

 You should not need to run cscie259setup or cscie259web more than once each this term.

 If you find that this course’s configuration of your account conflicts with a configuration

required by another course you’re taking this semester, please contact a member of the
course’s staff.

3. (0 points.) Finally, per the course’s syllabus, subscribe to the course’s listserv by following the

appropriate link of the course’s website. The listserv is exclusively for student-initiated
comments, discussions, and questions; to post a message to it, once subscribed, simply email
cscie259@lists.dce.harvard.edu.

4. (0 points.) SSH to nice.fas.harvard.edu and execute the following command.

 mkdir ~/cscie259/

 All of your work, no matter where you develop it, will ultimately need to reside in this

directory for submission.

 If you intend to do your work on nice.fas.harvard.edu, proceed to execute the following

sequence of commands as well.2

 cp –r ~cscie259/pub/distribution/projects/project1-7.0/ ~/cscie259/
 cd ~/cscie259/
 ls

 You should see that you have the following in your current working directory.

 project1-7.0/

 If, on the other hand, you do not intend to do your work on nice.fas.harvard.edu, you

may proceed to download a gzip-compressed tarball or a ZIP file containing this
project1-7.0/ directory from the course’s website to your local machine. Or, of course, can
you transfer the directory itself via SFTP to your local machine. Refer to this document’s
Appendix for further directions.

2 Beware the distinction between ~cscie259 and ~/cscie259.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 4 of 16 –

 Notice, now, that your project1-7.0/ directory is structured as follows.

 project1-7.0/
 docs/
 cscie259/
 project1/
 mf/
 samples/
 xml/
 src/
 cscie259/
 project1/
 mf/

 Not surprisingly, many of these directories contain one or more files. For instance,

project1-7.0/ contains build.xml, a configuration file for Ant, the build tool you will use
to build Project 1’s components.3 (In fact, during development, this tool will automatically
generate a build/ directory in your project1-7.0/ directory containing your .class files.)
In project1-7.0/docs/, you will find Javadoc for this project’s distribution code.
(Incidentally, as discussed later in this document, anytime you modify or add to that code for
this project, you can easily update those Javadoc with Ant.) In
project1-7.0/samples/xml/, you will find a finite supply of XML files that you’re
welcome to use during any testing of your code. Finally, in project1-7.0/src/, you will
find this project’s distribution code, which has been divided into two packages:
cscie259.project1 and cscie259.project1.mf.

 Ensure that everything is in order by executing the following command from within your

project1-7.0/ directory.

 ant compile

 (Alternatively, you can execute ant without any arguments.) By default, ant will compile

cscie259.project1.* and cscie259.project1.mf.*, storing the resulting bytecodes in
project1-7.0/build/. Ensure that compilation was successful by executing

 java cscie259.project1.AttributeConverter

 followed by

 java cscie259.project1.mf.Tester

 from within your project1-7.0/ directory. Both commands should yield usage information

for the programs; any other results, particularly on machines other than
nice.fas.harvard.edu, suggest a problem with your setup. Contact a member of the
course’s staff if you are unable to solve the problem. Compiling the code we wrote, however,
should be the easiest part of this project!

3 You are welcome to add new targets to this file, particularly for testing.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 5 of 16 –

5. (0 points.) Consider utilizing version-control software (e.g., CVS, Microsoft Visual SourceSafe,
RCS, Subversion, etc.) for this project and all future projects. Neither dogs eating source code
nor humans accidentally deleting work constitutes an emergency, so far as extensions are
concerned.

Quickies.

Please type your answers to questions 6 through 10 in a file called questions.html,
questions.rtf, questions.pdf, or questions.txt in your project1-7.0/ directory. Note
that questions 7 and 9 require that you sketch a DOM; ASCII art suffices.

6. (4 points.) Consider the XML fragment below, an excerpt from CSCI E-259’s database

in 1636.

<student type="undergrad">
 <name>John Harvard</name>
 <email>john@harvard.edu</email>
 <phone/>
 <grades>
 <project number="1">137</project>
 </grades>
</student>

 Unfortunately, phones didn’t exist in 1636, so the course hadn’t a phone number on file for

John. Oddly enough, though, it did have an email address. Anyhow, disregarding ignorable
(i.e., meaningless) whitespace, list the SAX events that would be fired were this fragment to be
parsed by a SAX parser.

7. (4 points.) Consider now a larger excerpt from CSCI E-259’s original database, the root

element of which is students.

<?xml version="1.0"?>
<!-- CSCI E-259 students -->
<students>
 <student type="undergrad">
 <name>John Harvard</name>
 <email>john@harvard.edu</email>
 <phone/>
 <grades>
 <project number="1">137</project>
 </grades>
 </student>
</students>

 Sketch the DOM represented by this XML, again disregarding ignorable whitespace.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 6 of 16 –

8. (5 points.) For each of the following scenarios, specify whether SAX or DOM is the more
appropriate API. Be sure to justify your choice with one or more sentences.

i. You have been given the task of writing an application that needs to do complex

calculations on XML input. These calculations require random access throughout the
XML document in order to perform the calculation.

ii. You are updating an internal database of stock information based on a XML feed of

quote ticks from a stock exchange.

iii. You are reading in a large XML file, performing a calculation on each element, and

writing out the result.

iv. You are reading in a large XML file, sorting the data, and writing out the result.

v. You need to extract the content of one single element in an XML document quickly

each time it is received, and do not need access to the remainder of the document.

9. (8 points.) Consider the list of SAX events implied by the pseudocode below.

startDocument();
startElement("lectures");
startElement("lecture", {("number", "1"), ("available", "1")});
startElement("date");
characters("Wednesday, 31 January 2007");
endElement("date");
startElement("title");
characters("Lecture 1");
endElement("title");
startElement("subtitle");
characters("Introduction");
endElement("subtitle");
startElement("handouts");
startElement("handout");
startElement("name");
characters("Lecture Notes");
endElement("name");
startElement("formats");
startElement("format", {("available", "0"),
 ("type", "PDF"), ("filename", "lecture1.pdf")});
endElement("format");
endElement("formats");
endElement("handout");
endElement("handouts");
endElement("lecture");
endElement("lectures");
endDocument();

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 7 of 16 –

 What XML fragment generated these SAX events upon being parsed? Although these events
excluded ignorable (i.e., meaningless) whitespace, do pretty-print your answer.

 Then, assuming lectures is the root element of some document, sketch the DOM suggested

by these SAX events.

10. (6 points.) Give a grammar for a metalanguage (reminiscent of much simplified XML) that

only supports elements whose names must be entirely alphabetical and whose content may be
zero or more other elements, alphanumeric content, and/or whitespace. The metalanguage’s
tags, however, cannot contain any whitespace.

 Below is just one of the infinitely many strings that might be generated by such a grammar.

<foo>
 <bar>
 <baz/>
 <qux>quux</qux>
 </bar>
</foo>

mf.XMLParser.

Please type your answers to questions 12, 14, 16, and 18 in a file called questions.html,
questions.rtf, questions.pdf, or questions.txt in your project1-7.0/ directory.

11. (6 points.) Okay, it’s time to enhance that simplified XML parser introduced in Lectures 2

and 3!

 Recall that said parser only supported the following grammar, where Name could be zero or

more characters excluding '>', and CharData could be zero or more characters
excluding '<'.

 element ::= STag content Etag
 content ::= (element | CharData)*
 STag ::= '<' Name '>'
 ETag ::= '<' '/' Name '>'

 In other words, the parser did not support attributes or empty elements. And it did not

distinguish ignorable whitespace from meaningful whitespace. Moreover, the parser expected
the very first character of its input file to be '<'; even leading whitespace would produce an
error.

 Clearly, that parser had limits. Your job is to make it better.

 First, though, read through the code in project1-7.0/src/cscie259/project1/mf/,

which you retrieved for question 4. Notice that the files comprise a package called
cscie259.project1.mf. Also take care to notice which files you MAY and MAY NOT

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 8 of 16 –

modify. Again, Javadoc for that code can be found in project1-7.0/docs/ as well as on the
course’s website.

 Next, go ahead and compile cscie259.project1.mf.*, without making any modifications

to the code, by executing the following from within your project1-7.0/ directory.

 ant compile-Tester

 Recall that a number of sample XML files can be found in project1-7.0/samples/xml/.

Proceed to test this parser, as is, by executing the first test routine in the staff’s Tester
program on 1.xml and 2.xml. To be clear, execute

 java cscie259.project1.mf.Tester samples/xml/1.xml 1

 and

 java cscie259.project1.mf.Tester samples/xml/2.xml 1

 from within your project1-7.0/ directory.

 The unmodified parser should have no trouble parsing these files. Now try testing the parser

with 3.xml. Uh oh.

 Once you understand the unmodified parser’s framework, as well as the staff’s test routines,

proceed to eliminate this limitation: the parser’s expectation that its input file’s first character
will demark the start of an element. In other words, enhance the parser so that it ignores any
whitespace that precedes an input file’s root element, where whitespace is any character for
which java.lang.Character.isWhitespace returns true. We suggest you confine your
modifications to XMLParser.java.

12. (1 point.) Explain, in a sentence or two, how you implemented support for whitespace

preceding a document’s root element, drawing our attention to code you wrote to solve the
problem.

13. (30 points.) Okay, now it’s time to eliminate some other shortcomings, particularly the

parser’s lack of support for attributes. Proceed to enhance your parser so that it supports the
following grammar, where Name is now one or more letters, numbers, hyphens, periods, and
underscores; CharData can be zero or more characters excluding '<'; AttValue can be zero
or more characters excluding '<' and '"'; S is any character for which
java.lang.Character.isWhitespace returns true; * denotes zero or more occurrences;
and + denotes one or more occurrences.

 element ::= STag content Etag
 content ::= (element | CharData)*
 STag ::= '<' Name (S+ Attribute)* S* '>'
 Attribute ::= Name Eq '"' AttValue '"'
 Eq ::= S* '=' S*
 ETag ::= '<' '/' Name S* '>'

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 9 of 16 –

 We suggest you focus your attention on Attributes.java and XMLParser.java.4 Though,
you are welcome to declare and define other classes as you see fit; be sure they belong to the
cscie259.project1.mf package.

 Once you (think you) have implemented support for attributes in your parser, enhance

XMLSerializer.java so that the first test routine in the staff’s Tester program can serialize
attributes to System.out for testing. Your parser should have no trouble with 4.xml, 5.xml,
or 6.xml now.

14. (4 points.) Explain, in a short paragraph, how you went about implementing support for

attributes, drawing our attention to code you wrote to solve the problem.

15. (30 points.) Needless to say, you’ve been doing a great job taking XML in, parsing it, and

serializing it right back out. But let’s keep that content around in memory a bit longer and
construct a DOM by way of the SAX events your parser can generate.

 Specifically, proceed to implement the DOMBuilder class, with, of course, support for

attributes. Inasmuch as this class extends our DefaultHandler, it is designed to build a
DOM out of SAX events. As suggested by DOMBuilder.java, that DOM will be represented
by a reference to a Document object whose descendents are instances of the Attr, Element,
and Text classes. All of these objects, mind you, are also of type Node.

 To be clear, in addition to modifying DOMBuilder.java, be sure to alter Attr.java and

Element.java as you see fit.5 You are welcome to declare and define other classes; be sure
they belong to the cscie259.project1.mf package.

 Once you (think you) have implemented support for DOM building, tweak DOMWalker.java

so that it understands your implementation of attributes in your DOM and can, therefore, pass
to startElement a reference to an Attributes object containing an element’s collection of
attributes (that, in your DOM, were represented as Attr objects). You can then test your
DOMBuilder with the second test routine in the staff’s Tester program.

16. (4 points.) Explain, in a short paragraph, how you went about implementing support for

DOM building, drawing our attention to code you wrote to solve the problem.

17. (10 points.) Okay, let’s get rid of one last shortcoming in this parser: its failure to understand

empty elements (like <foo/> or <foo bar="baz"/>). Specifically, enhance your parser so
that it supports the grammar below, which is identical to that specified in question 13 except
for its additional support for empty elements (embodied in its first two rules).

4 Note that Attr.java is intended for DOM-related work later in this project. Although you may be inclined to store
Attr objects within Attributes objects, you may wish to respect the independence of the SAX 2.0.2 and DOM Level 3
APIs, however redundant.
5 Recall that Attributes.java is intended for SAX-related work. Although you may be inclined to store Attributes
objects within Element objects, you may wish to respect the independence of the SAX 2.0.2 and DOM Level 3 APIs,
however redundant.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 10 of 16 –

 element ::= STag content Etag | EmptyElement
 EmptyElement ::= '<' Name (S+ Attribute)* S* '/' '>'
 content ::= (element | CharData)*
 STag ::= '<' Name (S+ Attribute)* S* '>'
 Attribute ::= Name Eq '"' AttValue '"'
 Eq ::= S* '=' S*
 ETag ::= '<' '/' Name S* '>'

 We suggest you confine your modifications to XMLParser.java. Recall that an empty

element can be printed as a start tag immediately followed by an end tag, with no characters
(even whitespace) in between, so it’s not necessary to modify XMLSerializer.java.

 Your parser should now have no trouble with a file like 7.xml or 8.xml.

18. (2 points.) Explain, in a sentence or two, how you went about implementing support for

empty elements, drawing our attention to code you wrote to solve the problem.

19. (0 points.) Although your parser may have conquered all of the sample files in

project1-7.0/samples/xml/, it’s probably best to test your code now on a number of
other input files, perhaps of your own creation, that do and don’t conform to the grammar
specified in question 17. After all, though your code may pass the tests we’ve provided to you,
it may not pass or handle nicely the tests we haven’t provided to you. ;-)

20. (2 points.) Update the Javadoc in project1-7.0/docs/ by executing

 ant javadoc

 from within your project1-7.0/ directory.

 If you wish to view your Javadoc via the Web, you may additionally type

 ant publish-javadoc

 from within your project1-7.0/ directory, thereafter visiting

 http://www.people.fas.harvard.edu/~username/cscie259/javadoc/project1-7.0/

 where username is your FAS username. This URL should prompt you for your FAS

username and the password that you selected for question 2.

21. (0 points.) Phew! It’s done. Breathe a sigh of relief and take a short break. Consider having a

snack too.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 11 of 16 –

My Second XML Parser.

22. (20 points.) It’s now time to put aside your first XML parser and pick up your second:

Xerces-J 2.7.1, a fully JAXP 1.3-compliant parser.

 It is always a matter of some debate whether data associated with an element should be

expressed as attributes of the element or as child elements with text nodes. Normally, to an
application processing an XML file, such details are of little relevance. But let us assume for a
moment we have an application that requires that the input document have no attributes.
Your job, then, is to write a Java program called AttributeConverter that takes as input an
input XML file and uses JAXP 1.3’s SAX API to convert all attributes to child elements and
serialize the result to System.out.6

 For instance, given

<foo><bar baz="qux" quux="quuux"/></foo>

 as input, your program should produce

<?xml version="1.0" encoding="UTF-8"?>
<foo><bar><baz>qux</baz><quux>quuux</quux></bar></foo>

 or some pretty-printed equivalent as output, although the XML declaration isn’t necessary.

However, lest you struggle with the complexities of whitespace, your output needn’t be pretty-
printed.

 Provided in project1-7.0/src/cscie259/project1/ is AttributeConverter.java, a

skeleton for your program. While you are free to implement additional classes as you see fit in
the cscie259.project1 package, your program’s main method must appear in
cscie259.project1.AttributeConverter. Although you may be tempted to have
AttributeConverter implement org.xml.sax.ContentHandler, you may find it simpler
to have AttributeConverter extend org.xml.sax.helpers.DefaultHandler or
org.xml.sax.helpers.XMLFilterImpl, both of which already implement
org.xml.sax.ContentHandler.

 As suggested by our skeleton, usage of your program must be

 java cscie259.project1.AttributeConverter filename

 from within your project1-7.0/ directory, where filename is the name (and path to) of the

file whose contents are to be converted; no other command-line arguments should be
accepted.

 To facilitate the serialization of your results to System.out, you are welcome to utilize one of

Apache’s org.apache.xml.serialize.XMLSerializer; documentation for this class can

6 In other words, your program must utilize javax.xml.parsers.SAXParser.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 12 of 16 –

be found in Xerces-J’s API, Javadoc for which is available via the course website’s Resources
area.

 Your code should take care to handle any errors gracefully.7 Needless to say, crashing on

certain input is not “graceful.”

 For simplicity, your program need not preserve an input file’s XML declaration, processing

instructions, DTDs, entities, or comments. However, if you are interested in having your
program do so nonetheless, you may find org.xml.sax.ext.LexicalHandler of interest.

Brownie Points.

Please type your answer to question 24 in a file called questions.html, questions.rtf,
questions.pdf, or questions.txt in your project1-7.0/ directory.

23. (0 points.) Notice that XMLSerializer provides support for pretty-printing. However, the

staff’s Tester program disables that feature. Why? Well, recall that we defined CharData to
be zero or more characters excluding only '<' and '>'. Consider the implication of this
definition for the parsing of 2.xml, which, recall, contains the following.

<foo>
 <bar>
 baz
 </bar>
</foo>

 Though it may not be immediately apparent, foo contains three children: the first is a text

node containing a newline character, followed by four spaces; the second is a bar element; the
third is a newline character. Meanwhile, bar contains one child: a text node containing a
newline character, followed by eight spaces, followed by a 'b', followed by an 'a', followed
by a 'z', followed by a newline character, followed by four spaces.

 Hence, if we proceed to parse this version of 2.xml with the staff’s Tester program, with

pretty-printing enabled, we obtain the following output.

7 If you opt to have AttributeConverter extend org.xml.sax.helpers.DefaultHandler or
org.xml.sax.helpers.XMLFilterImpl, note that both already implement org.xml.sax.ErrorHandler.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 13 of 16 –

<foo>

 <bar>

 baz

 </bar>

</foo>

 Not quite pretty, is it? The ugliness is the result of XMLSerializer’s indenting element and

text nodes in accordance with their relative location in the document without removing what
was probably “ignorable whitespace” in the original document. In other words, odds are, the
whitespace in

<foo>
 <bar>
 baz
 </bar>
</foo>

 is not an integral part of 2.xml’s content. However, your parser is not designed to remove

ignorable whitespace. In fact, it shouldn’t. Only validating parsers (i.e., parsers that validate
their input against a DTD or an XML schema) have the luxury of removing such whitespace.8

 However, if you are so inclined, in the interests of pretty-printing, brownie points, and, quite

possibly, brownies, enhance your parser so that it neither includes in SAX events ignorable
whitespace nor fires SAX events for sequences of characters composed entirely of ignorable
whitespace. Let us define “ignorable whitespace” to be any contiguous sequence of characters
for which java.lang.Character.isWhitespace returns true that appears (1) immediately
following some element’s start tag and immediately before another element’s start tag,
(2) immediately following some element’s start tag and immediately before that element’s end
tag, (3) immediately following some element’s start tag and immediately before some non-
whitespace character data, (4) immediately following some non-whitespace data and
immediately before some element’s end tag, (5) immediately following some element’s end tag
and immediately before another element’s start tag, or (6) immediately following some
element’s end tag and immediately before another element’s end tag. Whitespace characters in
attributes’ values are not ignorable and are to be left intact.

 So enhanced, your parser should interpret 2.xml as containing but one foo element whose

sole child is a bar element whose sole child is a text node containing 'b' followed by 'a'
followed by 'z'. With pretty-printing disabled, then, the staff’s Tester program, with 2.xml
as input, should output the following.

8 We’ll learn about DTDs and XML schemas in Lectures 8, 9, and 10.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 14 of 16 –

<foo><bar>baz</bar></foo>

 And, with pretty-printing enabled, the staff’s Tester program, with 2.xml as input, should

output the below instead.

<foo>
 <bar>
 baz
 </bar>
</foo>

 We suggest you confine your modifications to XMLParser.java.

 After making your modifications, be sure to update the Javadoc in project1-7.0/docs/ by

again executing

 ant javadoc

 from within your project1-7.0/ directory. Again, if you wish to view your Javadoc via

the Web, you may additionally type

 ant publish-javadoc

 from within your project1-7.0/ directory, thereafter visiting

 http://www.people.fas.harvard.edu/~username/cscie259/javadoc/project1-7.0/

 where username is your FAS username. This URL should prompt you for your FAS

username and the password that you selected for question 2.

24. (0 points.) Explain, in a sentence or two, how you went about ignoring ignorable whitespace,

drawing our attention to code you wrote to solve the problem.

Submitting Project 1.

25. (0 points.) If you have not done your work on nice.fas.harvard.edu, transfer via SFTP

your project1-7.0/ directory from your local machine to the cscie259/ directory in your
FAS account’s home directory. Recall that you created that directory for question 4.

 Next, ensure that the structure of your project1-7.0/ directory on

nice.fas.harvard.edu is the following.

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 15 of 16 –

 project1-7.0/
 docs/
 cscie259/
 project1/
 mf/
 samples/
 xml/
 src/
 cscie259/
 project1/
 mf/

 Your project1-7.0/ directory should contain build.xml along with questions.html,

questions.rtf, questions.pdf, or questions.txt; project1-7.0/docs/ should
contain updated Javadoc; project1-7.0/samples/xml/ should contain those XML files it
originally contained, along with any others you created during testing; and
project1-7.0/src/ should contain the Java source it originally contained, along with any
additional Java source you wrote.

 Just to be safe, particularly if you developed offsite, build all of your source one last time by

executing the following from within your project1-7.0/ directory on
nice.fas.harvard.edu. (Be sure you’ve updated build.xml to handle any files of your
own creation, if necessary.)

 ant compile

 Both cscie259.project1.AttributeConverter and cscie259.project1.mf.Tester

should be executable from that same directory.
 Once everything’s in order, clean up your workspace by executing

 ant clean
 from within your project1-7.0/ directory.

 Lastly, submit your work electronically by executing the following command from within your

project1-7.0/ directory.

 cscie259submit project1

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your

project’s successful submission. You may re-submit as many times as you’d like; each re-
submission will overwrite any previous submission. But take care not to re-submit after the
project’s deadline, as only your latest submission’s timestamp is retained.

26. (1 point.) Congrats, you’re done! You deserve a point for that!

Computer Science E-259: XML with Java
Harvard Extension School

Spring 2007

– 16 of 16 –

Appendix

So long as your project ultimately compiles and executes on nice.fas.harvard.edu, you are
welcome to develop it on your own computer. We leave it to you to translate the commands in this

document to your own operating system’s syntax (e.g., forward slashes to backslashes, $VAR to
%VAR%, etc.). This appendix explains how to configure your computer like nice.fas.harvard.edu.

You are encouraged to discuss and troubleshoot these steps with classmates via the listserv.

 Get ready to start checking off boxes.

 Download JDK 5.0 Update 11 via the course’s website and install it.
 Define an environment variable called JAVA_HOME whose value is the full path to the JDK’s

directory.
 Prepend "$JAVA_HOME/bin" to your PATH.
 Define an environment variable called JAVA_COMPILER whose value is "NONE".

 Prepend "./build" to your CLASSPATH.
 Prepend "." to your CLASSPATH.

 Download Xalan 2.7.0 (i.e., xalan-j_2_7_0-bin.{tar.gz,zip}) via the course’s website

and extract it to its own directory.9
 Define an environment variable called XALAN_HOME whose value is the full path to Xalan’s

directory.
 Add "$XALAN_HOME/serializer.jar" to your CLASSPATH.
 Add "$XALAN_HOME/xalan.jar" to your CLASSPATH.
 Add "$XALAN_HOME/xercesImpl.jar" to your CLASSPATH.
 Add "$XALAN_HOME/xml-apis.jar" to your CLASSPATH.

 Download Ant 1.7.0 via the course’s website and extract it to its own directory.
 Define an environment variable called ANT_HOME whose value is the full path to Ant’s

directory.
 Add "$ANT_HOME/lib/ant.jar" to your CLASSPATH.
 Add "$ANT_HOME/lib/ant-launcher.jar" to your CLASSPATH.
 Append "$ANT_HOME/bin" to your PATH.

9 You actually don’t need Xalan itself for this project, but it ships with Xerces 2.7.1, which you do need. Since you will
need Xalan for Projects 2, 3, and 4, though, might as well set up everything now to save time!

