Computer Science E-259

XML with Java

Lecture 8: XQuery 1.0 and DTD

21 March 2007

David J. Malan

malan@post.harvard.edu

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Last Time

HTTP 1.1, JavaServer Pages 2.1, and Java Servlet 2.5

= HTTP 1.1

= n-Tier Enterprise Applications
= JavaServer Pages 2.1

= Java Servlet 2.5

= Project 3

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Typical J2EE Architecture
Computer
Laptop PDA
Client
XML? . HTTP
JSP/serviet [« JSP/servlet
Presentation A A
Web Server
XML? XML?
RMI
A4 \
_) EJB EJB
Business Logic
\ EJB Server /
XML? XML?
JDBC
-
&
3

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Last Time

Wahoo!

Computer

You Write!
. Client Tier

Login servlet Prefs serviet View servlet

webserver
> Middle Tier

UserManager NewsProvider

maoreover.com |

N

<> .
> Back-End Tier

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259

This Time

= XQuery 1.0
= DTD
* Project 3

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

History

= Recommendation as of 1/07.

= “XML is a versatile markup language, capable of
labeling the information content of diverse data sources
including structured and semi-structured documents,
relational databases, and object repositories.”

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

XPath 2.0

= Seguences

= Data types

= Enhanced function set
= Multiple sources

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

Path Expressions

"= doc ("books
"= doc ("books
" doc ("books

"= doc ("books

.xml")

.xml") /bib/book/title
.xml")//title

.xml") /bib/book [price<50]

Adapted from http://www.w3schools.com/xquery/xquery example.asp.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

FLWOR EXxpressions

FLWOREXpr ::=

(ForClause | LetClause)+ WhereClause? OrderByClause? "return" ExprSingle

9 Excerpted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

10

XQuery 1.0

FLWOR EXxpressions

for $x in doc ("books.xml") /bib/book

where $x/price>50
order by $x/title
return $x/title

Adapted from http://www.w3schools.com/xquery/xquery example.asp.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

FLWOR EXxpressions

<bib>
<book>
<title>TCP/IP Illustrated</title>
<author>Stevens</author>
<publisher>Addison-Wesley</publisher>
</book>
<book>
<title>Advanced Unix Programming</title>
<author>Stevens</author>
<publisher>Addison-Wesley</publisher>
</book>
<book>
<title>Data on the Web</title>
<author>Abiteboul</author>
<author>Buneman</author>
<author>Suciu</authors>
</book>
</bib>

1 1 Excerpted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

FLWOR EXxpressions

<authlist>
{
for $a in fn:distinct-values ($books//author)
order by $a
return
<author>
<name>
{ sa/text() }
</name>
<books>
{
for $b in $books//book[author = $al
order by $b/title
return $b/title
}
</books>
</author>

}

</authlist>

12 Adapted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

FLWOR EXxpressions

<authlist>
<author>
<name>Abiteboul</name>
<books>
<title>Data on the Web</title>
</books>
</author>
<author>
<name>Buneman</name>
<books>
<title>Data on the Web</title>
</books>
</author>
<author>
<name>Stevens</name>
<books>
<title>TCP/IP Illustrated</title>
<title>Advanced Unix Programming</title>
</books>
</author>
<author>

<name>Suciu</name>

<books>
<title>Data on the Web</title>
</books>
</author>
13 </authlist> Excerpted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

Sequence Expressions

for $d in doc("depts.xml")//deptno
let $e := doc("emps.xml")//emp[deptno = $d]
where count($e) >= 10
order by avg($e/salary) descending
return
<big-dept>
{
sd,
<headcount>{count ($e) }</headcount>,
<avgsal>{avg($e/salary) }</avgsal>

}

</big-dept>

14 Example excerpted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

15

XQuery 1.0

Conditional Expressions

FOR $h IN doc("library.xml")//holding

RETURN
<holding>
{ $h/title,
IF ($h/@type =
THEN $h/editor
ELSE $h/author

}

</holding>

"Journal®")

Example adapted from http://www.brics.dk/~amoeller/XML/querying/condexp.html.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

16

XQuery 1.0

Quantified Expressions

FOR $b IN doc ("bib.xml") //book
WHERE SOME $p IN $b//paragraph SATISFIES

(contains ($p,"sailing") AND
contains ($p, "windsurfing"))

RETURN $b/title

FOR $b IN doc ("bib.xml")//book
WHERE EVERY $p IN $b//paragraph SATISFIES

contains ($p, "sailing")
RETURN S$b/title

Examples adapted from http://www.brics.dk/~amoeller/XML/querying/quantexp.html.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

Data Types

String-related

= ENTITIES, ENTITY, ID, IDREF, IDREFS, language, Name,
NCName, NMTOKEN, NMTOKENS, normalizedString, QName,
string, token

= Date-related
"= date, dateTime, duration, gDay, gMonth, gMonthDay,

gYear, gYearMonth, time
* Number-related

" base64Binary, byte, decimal, double, float,
hexBinary, int, integer, long, negativeInteger,
nonPositiveInteger, positivelInteger, short,
unsignedLong, unsignedInt, unsignedShort,
unsignedByte

= Err, unrelated
= anyURI, boolean, NOTATION, ...

= User-Defined

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XQuery 1.0

Expressions on Sequence Types

= Instance of
<a>{5} instance of xs:integer

= Typeswitch
typeswitch($customer/billing-address)
case $a as element(*, USAddress) return $a/state
case $a as element (*, CanadaAddress) return $a/province
case $a as element (*, JapanAddress) return $a/prefecture
default return "unknown™"
= (Cast and Castable
if ($x castable as hatsize)
then $x cast as hatsize
else if ($x castable as IQ)
then $x cast as IQ

else $x cast as xs:string

18 Examples excerpted from http://www.w3.org/TR/xquery/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Well-Formedness

<moreovernews:>

[...]

<article id=" 840925179">
<url>http://c.moreover.com/click/here.pl?x840925179</url>
<headline text>Whose Genome Is It, Anyway?</headline text>
<source>Discover</source>
<media type>text</media type>
<cluster>moreover...</cluster>
<tagline></tagline>
<document url>http://discovermagazine.com</document url>
<harvest time>Mar 11 2007 8:46AM</harvest time>
<access registration></access registration>
<access status></access status>

</article>

[...]

</moreovernews>

19 Excerpted from http://www.fas.harvard.edu/~cscie259/distribution/projects/project3-7.0/ROOT/xml/cache/Biotech%2520news.xml.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

validity

<!ELEMENT moreovernews (article*)>

<!ELEMENT article (url, headline text, source, media type, cluster,
tagline, document url, harvest time, access registration,
access status)>

<!ATTLIST article id ID #IMPLIED>

<!ELEMENT url (#PCDATA) >

<!ELEMENT headline text (#PCDATA) >

<!ELEMENT source (#PCDATA) >

<!ELEMENT media type (#PCDATA) >

<!ELEMENT cluster (#PCDATA) >

<!ELEMENT tagline (#PCDATA) >

<!ELEMENT document url (#PCDATA) >

<!ELEMENT harvest time (#PCDATA)>

<!ELEMENT access registration (#PCDATA) >

<!ELEMENT access status (#PCDATA) >

20 Available at http://www.fas.harvard.edu/~cscie259/distribution/projects/project3-7.0/ROOT/dtd/moreovernews.dtd.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

XHTML 1.0 Transitional

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">

<head>
<title/>
</head>
<body/>
</html>
21 Available at http://www.fas.harvard.edu/~cscie259/distribution/lectures/8/examples8/xhtml.html.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Overview

A DTD is a definition of an XML document's schema
= Codifies what the structure of a document must be

» The relationships between the components of the
document

= What data is allowed where

= The DTD language was released as part of the official XML
specification

= XML Schema is a more modern, powerful way to
accomplish the same goals

= However, DTDs are still widely in use, and are supported
as the primary method of validating XML

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Motivation

= DTDs, or schemas in general, are a contracts for what make a certain
type of XML document

= DTDs allow you to check whether a document "instance" is "valid" with
respect to its schema (in contrast with its simply being well-formed)

= DTDs provide a place to specify what belongs in elements, attributes,
and what individual elements represent, etc.

= Particularly useful in B2B transactions where agreeing on a data format
IS important
= DTDs encapsulate good document design so you can benefit from it

» Why reinvent a document standard when there is DocBook?
http://www.oasis-open.org/specs/index.php#dbv4.1

» Why reinvent a financial exchange standard when there is OFX?
http://www.ofx.net/ofx/specview/SpecView.html

» Why reinvent a voice standard when there is VoiceXML?
http://www.w3.0rg/TR/voicexml20/vxml.dtd

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

To DTD or not to DTD

= |t depends on the application

= DTDs (or schemas in general) are crucial when a common
understanding of data is important

= XML makes data interchange easier from a technical
standpoint, but it still doesn't eliminate human
misunderstandings

= | say <price>, yOU say <cost>
= Writing a DTD can help you design a good data model
= All the principles of proper data modeling apply to XML as
well
= However, DTDs constrain XML flexibility
= As soon as you have a DTD, your data model is less
extensible
= At least, changes require distribution of a new DTD

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

A SONG Element

<SONG>
<TITLE>Everyday</TITLE>
<COMPOSER>Dave</COMPOSER>
<COMPOSER>Boyd Tinsley</COMPOSER>
<PRODUCER>Dave Matthews</PRODUCER>
<PUBLISHER>BMG</PUBLISHER>
<LENGTH>12:20</LENGTH>
<YEAR>2001</YEAR>
<ARTIST>Dave Matthews Band</ARTIST>
</SONG>

25 Excerpted from http://www.fas.harvard.edu/~cscie259/distribution/lectures/8/examples8/song{1,2}.xml.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

A DTD for soNG Elements

<!ELEMENT SONG (TITLE, COMPOSER+, PRODUCER¥*,
PUBLISHER*, LENGTH?, YEAR?, ARTIST+) >
<!ELEMENT TITLE (#PCDATA) >

<! ELEMENT COMPOSER (#PCDATA) >

<! ELEMENT PRODUCER (#PCDATA) >

<! ELEMENT PUBLISHER (#PCDATA) >

<!ELEMENT LENGTH (#PCDATA) >

<! ELEMENT YEAR (#PCDATA) >

<! ELEMENT ARTIST (#PCDATA) >

26 Available at http://www.fas.harvard.edu/~cscie259/distribution/lectures/8/examples8/song.dtd.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

The <! ELEMENT> Declaration

<! ELEMENT element name

(content model) >

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

The <! ELEMENT> Declaration

= Gives the name and content model of an element
= The name must be unique
= The content model specifies what the valid child content

can be
= #PCDATA <!ELEMENT TITLE (#PCDATA) >
= EMPTY <! ELEMENT course EMPTY>

= Elements
= Mixed
= ANY <!ELEMENT comment ANY>

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Element Content

» The most sophisticated of content types

= Allows you to specify a regular expression for the allowed
child elements

" <!ELEMENT SONG (TITLE, COMPOSER+, PRODUCER*¥*,
PUBLISHER*, LENGTH?, YEAR?, ARTIST+) >

" <!ELEMENT spec (front, body, back?)>
" <!ELEMENT divl (head, (p | list | note)*, div2¥*)>

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Building Blocks of Regular Expressions

= foo?

* The foo element must occur O times or exactly 1 time.
= foo*

* The foo element may occur O or more times.
= foo+

» The foo element must occur 1 or more times.
(foo|bar|baz)
= Either foo or bar or baz must appear exactly 1 time.

(foo,bar,baz)

= 1 instance of foo must occur, followed by 1 instance of
bar, followed by 1 instance of baz.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Mixed Content

When both character and element content can be
interspersed, the names of the elements can be
constrained, but not their order or number; and #PCDATA
must be declared first!
" <!ELEMENT p (#PCDATA|a|u|b|i|em)*>

" <p>I am bold and <i>italic</i>.</p>
" <!ELEMENT PO (#PCDATA|item|shipdate|qgty) *>

" <PO><qgty>1l</qgty> <item>Flowbee</item> was

shipped to you on <shipdate>29 March
2003</shipdate>.</PO>

31

The Flowbee Precision Home Haircut System is available for purchase at http://www.flowbee.com/.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

The <!ATTLIST> Declaration

<!ATTLIST element name
attribute name attribute type default declaration

attribute name attribute type default declaration

e o o

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

<!ATTLIST> Examples

<!ATTLIST termdef

id ID #REQUIRED
type CDATA #REQUIRED
name CDATA #IMPLIED>
" <IATTLIST 1list
type (bullets|ordered|glossary) "ordered">

<!ATTLIST form
method CDATA #FIXED “post">

<!ATTLIST paper
language CDATA "English">

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Attribute Types

CDATA
= Character data, including entities.
= ID
= Must be unique within document (and must start with a letter ®).
= IDREF
= Must refer to an ID in document.
= IDREFS
= References one or more IDS, separated by spaces.
= ENTITY
= Must refer to an entity.
= ENTITIES
= References one or more entities, separated by spaces.
= NMTOKEN
= Name token devoid of whitespace.
= NMTOKENS
= Series of one or more NMTOKENS, separated by spaces.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Default Declarations

= H#FIXED

= Attribute’s value is fixed and must be that specified in
DTD.

= H#REQUIRED

* The element is required to have the attribute, and the
the attribute is required to have a value.

" H#IMPLIED
= Attribute is optional.

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Where do DTDs go?

DTDs can be
= placed in a standalone file known as an "external subset"
= part of the <!DOCTYPE> declaration in the XML document as an
"internal subset" (which overrides any declarations in an
external subset)
Examples

= <!DOCTYPE SONG [
<! ELEMENT SONG (TITLE, COMPOSER+, PRODUCER¥*,

PUBLISHER*, LENGTH?, YEAR?, ARTIST+)>
1>
= <!DOCTYPE SONG SYSTEM "song.dtd">
"= <!IDOCTYPE SONG SYSTEM "song.dtd" [
<!ELEMENT ARTIST (FIRST,LAST)>
<!ELEMENT FIRST (#PCDATA) >

<! ELEMENT LAST (#PCDATA) >
]1>

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Validation

javax.xml .parsers.SAXParserFactory
org.xml.sax.ErrorHandler

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Whitespace

<foo>
<bar/>
<baz/>

</foo>

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Similar XML Constructs

= Entities
" <!ENTITY nbsp " ">

= <!ENTITY copyright "Copyright (c¢) David Malan. All
rights reserved.">

= Notations (http://msxml.com/intro xml/notation decl.html)
" < INOTATION GIF SYSTEM "GIF Notation">
<!ENTITY watAGE_Logo SYSTEM "watage. gif " NDATA GIF>

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

DTD

Shortcomings

= Not well-formed XML (though still derived from SGML)
= No built-in data types (e.g., bool, int, float, string, etc.)
= No support for custom data types (e.g., phone numbers)
= No pattern-matching
= No inheritance

= No support for ranges (e.g., "year must be an integer between
0 and 99", "review can appear as a child of book no more than

10 times", etc.)
= Not namespace-aware

= Content models must be deterministic; cannot allow arbitrary
ordering of children, as with:

= <!ELEMENT foo ((bar,baz,q
(baz,bar,

r,qux,baz) |
z, qux,bar) |

(qux,bar,bd g¥x,baz,bar)) >

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Next Time

XML Schema (Second Edition)

= XML Schema (Second Edition)

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259

XML with Java

Lecture 8: XQuery 1.0 and DTD

21 March 2007

David J. Malan

malan@post.harvard.edu

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

