
Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 1 of 18 –

Project 3
Wahoo!
124 Points

due by 2:35 P.M. ET on Monday, 3 December 2007

It is recommended that you read the entirety of this document,

well in advance of this project’s deadline, before answering any of its questions.

It is further recommend that you begin answering this document’s questions immediately thereafter.
Really.

Goals.

The goals of this project are to:

• Challenge you to implement your own XML-based portal.
• Give you hands-on experience with JavaServer Pages 2.1, Java Servlet 2.5, and TrAX, as well

as additional experience with XSLT.
• Introduce you to an industry-standard application server, Apache’s Tomcat 6.0.14.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 2 of 18 –

Grading Metric.

Each question is worth the number of points specified parenthetically in line with it.

Your responses to questions requiring exposition will be graded on the basis of their clarity and
correctness. Your responses to questions requiring code will be graded on the following bases.1

 Basis Considerations
 Correctness Does your code work in accordance with the question’s guidelines?

 Design Does your code make sense, given the question’s framework? Is your code
written logically, clearly, and succinctly? Is your code efficient? Is your code
divided into logical units (e.g., multiple methods and templates)?

 Style Is your code rigorously documented with inline comments and Javadoc doc
comments and tags?2 Is it clear from your comments alone how your code
operates? Is your code pretty-printed? Are your attributes, data members,
elements, methods, templates, and variables aptly named?

Academic Honesty.

For this project, you will be running your own instance of a webserver on nice.fas.harvard.edu
that does not require that any files or directories being served be world-executable or world-
readable.

If, however, you opt to publish world-readable files on www.people.fas.harvard.edu for some
reason, it is expected that you will ensure the privacy of your work by password-protecting any Web-
accessible directories and naming files in such a (random) way as to render their viewing on
nice.fas.harvard.edu unlikely.

Recall that, for Project 1, you configured your account with a ~/public_html/ directory and a
password-protected ~/public_html/cscie259/ directory.

Needless to say, attempting to view the work of another student, even if published in a world-
accessible directory, is considered academic dishonesty and will be handled accordingly.

1 By code, we mean Java, JSP, XHTML, XML, XPath, and XSLT.
2 With regard to Javadoc, we expect descriptions for all methods and appropriate use of the @param, @return, and
@throws block tags.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 3 of 18 –

Getting Started.

1. (1 point.) Okay, okay, fine, here’s a point.

2. (0 points.) If you intend to do your work on nice.fas.harvard.edu, SSH to that machine

and execute the following sequence of commands.3,4

 cp –r ~cscie259/pub/distribution/projects/project3-8.0/ ~/cscie259/
 cd ~/cscie259/
 ls

 You should see that you have the following in your current working directory.

 project1-8.0/ project2-8.0/ project3-8.0/

 If, on the other hand, you do not intend to do your work on nice.fas.harvard.edu, you

may proceed to download a gzip-compressed tarball or a ZIP file containing this
project3-8.0/ directory from the course’s website to your local machine. Or, of course,
you can transfer the directory itself via SFTP to your local machine. Refer to this document’s
Appendix for further directions.

 Notice, now, that your project3-8.0/ directory is structured as follows.

project3-8.0/
 conf/
 src/
 cscie259/
 project3/
 wahoo/
 temp/
 webapps/
 ROOT/
 docs/
 cscie259/
 project3/
 wahoo/
 dtd/
 images/
 WEB-INF/
 xml/
 cache/
 xsl/

 Ensure that your account or machine is in order by executing the following command from

within any directory.5

3 These commands assume that you already created (for Projects 1 and 2) a directory called cscie259/ in your FAS
account’s home directory.
4 Beware the distinction between ~cscie259 and ~/cscie259.
5 Note that, on nice.fas.harvard.edu, `EnvironmentCheck` is an alias for
` java org.apache.xalan.xslt.EnvironmentCheck`.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 4 of 18 –

 EnvironmentCheck

 Confirm that your account is configured to use Ant 1.7.0, Xerces-J 2.7.1, and Xalan-J 2.7.0.

 Next, execute the following command from within your project3-8.0/ directory.6

 ant compile

 By default, ant will compile cscie259.project3.wahoo.*, storing the resulting bytecodes

in project3-8.0/webapps/ROOT/WEB-INF/classes/.

 In fact, take a look at project3-8.0/build.xml so that you know what ant can do for you

during this project.

 Next, proceed to edit project3-8.0/conf/server.xml with your favorite text editor. Per

the file’s comments, locate the Server element’s port attribute and assign it an integral value
between 1024 and 65535, inclusive; then, locate the Connector element’s port attribute and
assign it an integral value between 1024 and 65535, inclusive, as well, taking care not to reuse
the value you chose for the Server element’s port attribute. After saving and closing the file,
execute the following command from within project3-8.0/.7

 tomcat

 Then, assuming you’ve connected via SSH to nice.fas.harvard.edu, take notice of the

particular host to which you’re connected by examining your prompt (which should be of the
form "$USER@$ICEBOX (%~):", per Project 1’s configuration of your account) or by
executing the following command.8

 echo $ICEBOX

 You should see output resembling the below, where n is your choice of ports for the

Connector element’s port attribute.

6 Alternatively, you can execute ant without any arguments.
7 Note that, on nice.fas.harvard.edu, `tomcat` is an alias for `catalina.sh run`. If you opt to develop on a
Windows machine, you should instead execute `catalina.bat run` (assuming "%CATALINA_HOME%\bin\" is in your
PATH); alternatively, you can achieve this same aliasing effect by creating in any directory in your PATH a file called
tomcat.bat containing the following two lines.

@echo off
%CATALINA_HOME%\bin\catalina.bat run

8 Though we’ve always referred to it as one system, nice.fas.harvard.edu actually refers to a cluster of machines, all
of which mount via NFS your home directory; you are connected to one essentially at random.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 5 of 18 –

Using CATALINA_BASE: .
Using CATALINA_HOME: /home/c/s/cscie259/pub/local/jvm/apache-tomcat-6.0.14
Using CATALINA_TMPDIR: ./temp
Using JRE_HOME: /home/c/s/cscie259/pub/local/i386/jdk1.5.0_11
Mar 11, 2007 10:54:00 PM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on http-n
Mar 11, 2007 10:54:00 PM org.apache.catalina.startup.Catalina load
INFO: Initialization processed in 838 ms
Mar 11, 2007 10:54:00 PM org.apache.catalina.core.StandardService start
INFO: Starting service Catalina
Mar 11, 2007 10:54:00 PM org.apache.catalina.core.StandardEngine start
INFO: Starting Servlet Engine: Apache Tomcat/6.0.14
Mar 11, 2007 10:54:00 PM org.apache.coyote.http11.Http11Protocol start
INFO: Starting Coyote HTTP/1.1 on http-n
Mar 11, 2007 10:54:00 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 664 ms

 At this point, an instance of Tomcat is running under your userid on port n of the host to

which you’re connected. (Tomcat should now have control of your terminal; you should not
be returned to your shell’s prompt.) Confirm as much by visiting the URL below, taking care
to substitute $ICEBOX and n with their appropriate values.9,10

 http://$ICEBOX.fas.harvard.edu:n/happyenv.jsp

 Confirm that Tomcat, like your account, is configured to use Xalan-J 2.7.0 and Xerces-J 2.7.1.

 Next, visit the URL below, again taking care to substitute $ICEBOX and n with their

appropriate values.

 http://$ICEBOX.fas.harvard.edu:n/

 You should be automatically directed to /servlet/login, which should display Wahoo’s

login page. Meanwhile, output resembling the below should have been outputted to Tomcat’s
console (i.e., your terminal).

Adding "jharvard" to main memory with password "crimson"... Done.
Associating "Boston news" with user "jharvard"... Done.
Associating "Top stories" with user "jharvard"... Done.
Associating "Top technology stories" with user "jharvard"... Done.

 Go ahead and log in with username "jharvard" and password "crimson". Though, seeing

as you haven’t yet implemented your portal, the results won’t be all that interesting.

 Proceed to terminate Tomcat by hitting Ctrl-C at its console (i.e., your terminal).

 If your account or system does not behave as described above, simply contact

cscie259@lists.dce.harvard.edu or the staff for assistance.

9 If you opt to develop on your own machine, you should instead visit http://localhost:n/ or
http://127.0.0.1:n/.
10 Although you needn’t type "http://" to visit most websites with most browsers these days, you might need to do so
in this case.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 6 of 18 –

My Wahoo!

3. (0 points.) “Moreover Technologies is a provider of real-time information management

solutions, delivering essential online information in time to impact business decisions.

 “Unlike traditional news services that resell archived information, Moreover’s sophisticated

technology continually scours the Internet to capture breaking news and business information
from more than 4,500 qualified, handpicked sources. Headline links to relevant information
are filtered according to clients’ specific business needs, and delivered in real time to any
platform or business application through one of Moreover’s customizable Connected
Intelligence™ solutions.

 “Corporations use Moreover’s technology solutions to stay competitive and increase their

margins. Today’s quickly evolving business environment requires that companies have the
right information, all the time, to spot market opportunities, track industry developments, and
react quickly to announcements. Ultimately, Moreover helps every employee make better and
faster decisions to stay ahead of the competition.

 “Moreover Technologies has operations in San Francisco and London, and is backed by

prominent venture firms including Reuters Venture Capital and Atlas Ventures.”11

 How’s that for marketing hype?

 In other words, Moreover is a syndicator of news. The firm aggregates headlines from around

the world and produces “over 330 feeds that are free to non-for-profit webmasters,” who can
then incorporate those headlines and the associated articles into their own sites.12

 Sound too good to be true? Read on.

4. (0 points.) Not only does Moreover offer its newsfeeds as RSS, it also offers them in its own

proprietary XML format. We’ll be using Moreover’s proprietary format, only because it offers
more details than does its RSS feed (e.g., articles’ harvest times).

 Before you can access a newsfeed, however, you must know its name. Fortunately, Moreover

provides an XML-based list of “channels” and categories into which it has placed its many
newsfeeds, the DTD for which appears below.13

11 Quotation excerpted from http://w.moreover.com/main_site/aboutus/company.html prior to page’s alteration.
12 Quotation excerpted from http://w.moreover.com/dev/xml/ prior to page’s removal.
13 This DTD is also available at http://w.moreover.com/xml/xml_nestedcatlist.dtd as well as in
project3-7.0/webapps/ROOT/xml/cache/.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 7 of 18 –

<!ELEMENT nested_category_list (channel*)>
<!ELEMENT channel (channel_name, category*)>
<!ELEMENT channel_name (#PCDATA)>
<!ELEMENT category (category_name, feed_name)>
<!ELEMENT category_name (#PCDATA)>
<!ELEMENT feed_name (#PCDATA)>

 The list of channels and their categories itself is available (as, of course, XML) at the URL

below.14

 http://w.moreover.com/categories/nested_category_list.xml

 Note that each newsfeed mentioned in the list of channels and categories can be accessed by

way of its category_name. For instance, to access the “Biotech news” feed, you can visit

 http://p.moreover.com/cgi-local/page?c=Biotech%20news&o=xml

 where the HTTP GET string’s parameters specify the category’s name (c) and the newsfeed’s

output format (o), respectively.15

 Each feed is then structured according to the DTD below.16

<!ELEMENT moreovernews (article*)>
<!ELEMENT article (url, headline_text, source, media_type, cluster,
tagline, document_url, harvest_time, access_registration, access_status)>
<!ATTLIST article id ID #IMPLIED>
<!ELEMENT url (#PCDATA)>
<!ELEMENT headline_text (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT media_type (#PCDATA)>
<!ELEMENT cluster (#PCDATA)>
<!ELEMENT tagline (#PCDATA)>
<!ELEMENT document_url (#PCDATA)>
<!ELEMENT harvest_time (#PCDATA)>
<!ELEMENT access_registration (#PCDATA)>
<!ELEMENT access_status (#PCDATA)>

14 A sample list, generated automatically at 10:25 P.M. ET on Sunday, 11 March 2007, is available in
project3-7.0/webapps/ROOT/xml/cache/nested_category_list.xml.
15 Note that any space in a category’s name must be encoded in the application/x-www-form-urlencoded MIME
format (i.e., as '+' or '%20').
16 This DTD is also available at http://p.moreover.com/xml_dtds/moreovernews.dtd.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 8 of 18 –

For instance, below is an excerpt from the “Biotech news” feed at 10:21 P.M. ET on Sunday,
11 March 2007.17

 <moreovernews>
 [...]
 <article id="_840925179">
 <url>http://c.moreover.com/click/here.pl?x840925179</url>
 <headline_text>Whose Genome Is It, Anyway?</headline_text>
 <source>Discover</source>
 <media_type>text</media_type>
 <cluster>moreover...</cluster>
 <tagline></tagline>
 <document_url>http://discovermagazine.com</document_url>
 <harvest_time>Mar 11 2007 8:46AM</harvest_time>
 <access_registration></access_registration>
 <access_status></access_status>
 </article>
 [...]
 </moreovernews>

 Clearly, the root element of the newsfeed is moreovernews. Meanwhile, an article element

represents an individual article, uniquely identified by way of an id attribute. Each article
has a number of children: url specifies a proxy address for the actual article; headline_text
specifies the article’s headline; source specifies the article’s source; media_type specifies the
article’s format; cluster specifies (so far as I can tell) some sort of grouping for the article;
tagline specifies a the article’s tagline, if any; document_url specifies the homepage of the
article’s source; harvest_time specifies the moment at which the headline was discovered;
and access_registration and access_status specify registration requirements for the
article’s source, if any.

17 A copy of this excerpt’s source is available in project3-7.0/webapps/ROOT/xml/cache/Biotech%20news.xml.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 9 of 18 –

5. (0 points.) Lest you be overwhelmed by the challenge of implementing a web-based portal,
rest assured that we’ve provided you with a framework. Per Lecture 7, Wahoo’s architecture
resembles the below.

 In order to better understand this architecture, spend some time looking through the code in

project3-8.0/src/cscie259/project3/wahoo/.

 Start by examining the Login servlet by way of Login.java, which handles the task of

authenticating and creating users; notice how it uses login.xsl in
project3-8.0/webapps/ROOT/xsl/ to generate the login screen. Notice how HTTP
GETs and HTTP POSTs are both handled by doWork(·,·,·), which essentially drives the
entire servlet. Since Wahoo’s login screen is rather minimalist, displayLoginForm(·,·,·)
does little more than apply (by way of TrAX) login.xsl to an empty document; certainly a
more interesting login screen could make use of a non-empty document or actual XML
content. Note, by the way, that the XHTML generated by login.xsl includes a form that
will be submitted via an HTTP POST operation back to the Login servlet. Finally, notice
how the mere presence of a username in the session implies that a user is currently
authenticated (useful knowledge if you wish to detect whether a user’s attempted to visit some
servlet prior to authenticating).

 Take a quick peek, by the way, at project3-8.0/webapps/ROOT/index.jsp, a minimalist

JSP that redirects users to the Login servlet. In other words, if a user visits / on your instance
of Tomcat, the user will be redirected automatically to /servlet/login.

Client Tier

Middle Tier

Back-End Tier

You Write!

Computer

webserver

Login servlet Prefs servlet View servlet

UserManager NewsProvider

moreover.com

User DB

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 10 of 18 –

 Next, take a look at the View servlet by way of View.java; recall from your perusal of
Login.java that the Login server redirects a user to this View servlet upon successful
authentication. Eventually, this View servlet will generate the user’s personalized portal; at
present, it does very little.

 Now, stroll on over to the Prefs servlet by way of Prefs.java. Whereas the View servlet

will eventually display a user’s favorite headlines, the Prefs servlet will eventually provide the
user with a XHTML form-based interface with which to add newsfeeds to and remove
newsfeeds from his favorites. At present, the Prefs servlet does very little.

 That’s it for Wahoo’s servlets. To understand how they’re accessed by way of /servlet/,

take a quick look at project3-8.0/webapps/ROOT/WEB-INF/web.xml.

 Okay, let’s now examine the remaining classes in

project3-8.0/src/cscie259/project3/wahoo/, all of which provide support for
Wahoo’s middle tier, but don’t interact with the client tier directly.

 First, take a gander at WahooServlet.java for WahooServlet, the abstract class from which

the Login, Prefs, and View servlets descend. Besides the signature for each of those classes’
doWork methods, WahooServlet also offers a pair of helper methods, one of which
(i.e., redirect(·,·)) the Login servlet already makes use of, the other of which
(i.e., forward(·,·,·)) you may or may not find useful during development.

 Next, steal a glance at User.java, which implements the concept of a user. Then, read over

UserManager.java, which handles the storage and retrieval of user data, including
usernames, passwords, and favorite newsfeeds. In fact, recall the output on Tomcat’s console
when you tried to log in earlier: it’s this UserManager class whose methods loaded John
Harvard and his favorites into memory. Not sure how such came to pass? Well, upon the
user’s first visit to the Login servlet, the servlet container automatically executes that servlet’s
init() method, inherited from WahooServlet. (Similarly does the servlet container handle
the user’s first visit to the Prefs servlet.) That init() method, meanwhile, invokes the
UserManager class’s own init(·) method, which proceeds to instantiate, if it hasn’t already,
the class’s one and only instance, the result of which is execution of the class’s private,
explicit constructor, which parses project3-8.0/webapps/ROOT/xml/users.xml and loads
John Harvard and his favorites into memory. Make sense?18 Take a look at users.xml, so
that you see exactly what data is loaded into memory.

 Some additional discussion of the User and UserManager classes is perhaps in order. First,

it’s worth noting that calling, for example,

 UserManager.getUser("jharvard")

18 Feel free to insert temporarily, for example,

(new Exception()).printStackTrace()

anywhere you’d like to force a printing of the call stack; such should make this sequence of executions all the more clear.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 11 of 18 –

 will return John Harvard’s User object, provided John is registered in users.xml (which he

is, by default); otherwise, this method returns null.

 Second, calling, for instance,

 UserManager.addUser("jharvard", "crimson")

 will add to Wahoo’s database a user with username "jharvard" and password "crimson",

thereafter returning a reference to the newly instantiated User object, unless username
"jharvard" is already in the database, in which case null is returned.

 Finally, calling

 UserManager.save()

 will save information about users to users.xml. Be sure to call this method every time you

change user information (e.g., add a user, add or remove a favorite newsfeed for a user, etc.),
else the information will be lost when Tomcat terminates.

 Note that each of these three methods is static; you will never manipulate a reference to

UserManager object directly. Additionally, you should never instantiate a User object
directly; allow the UserManager class’s addUser(·,·) method to handle such details.19

 Make sense? Okay, last but not least, look over NewsProvider.java, which handles the

retrieval of headlines from Moreover.

 If you learn better by way of Javadoc, feel free to view project3-8.0/webapps/ROOT/docs/

with your favorite browser. Note that we’ve placed the project’s initial Javadoc in
project3-8.0/webapps/ROOT/ rather than in project3-8.0/ so that you can view our
(and, soon, your) Javadoc with your own instance of Tomcat!20 In fact, if Tomcat is running,
you can visit the URL below, again taking care to substitute $ICEBOX and n with their
appropriate values.

 http://$ICEBOX.fas.harvard.edu:n/docs/

 Got it? Lots of code, to be sure. But, trust us: spend a good amount of time know getting to

know the distribution code. Only if you understand the framework will building upon it be
straightforward.

6. (1 point.) You’re doing well, so far. Here’s a point for hanging in there!

19 In the interests of testing, you’re welcome, of course, to add user elements to users.xml with your favorite text
editor.
20 Know that, during the development of this project, you can update your Javadoc by executing `ant javadoc` from
within your project3-7.0/ directory.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 12 of 18 –

7. (40 points.) Okay, here we go! Your first challenge is to implement the essence of the portal:
the View servlet, which, once a user has authenticated, displays, at least, the user’s favorite
headlines and links to the corresponding articles. The design of this page (or, rather, set of
pages, all of which will be generated dynamically) is largely up to you, but we do ask that you
do adhere to a few guidelines.

i. The servlet should allow a user to view headlines from any of his or her favorite

newsfeeds. For instance, by clicking a link labeled "Boston news", John Harvard
should be able to view Boston’s latest headlines (along with links to the corresponding
articles); that link should pass back to the servlet the user’s choice of newsfeeds
(i.e., categories) by way of an HTTP parameter. In other words, the servlet should not
output the headlines from all of John Harvard’s favorites newsfeeds in one, large page.
We suggest that you include at the bottom of any page generated by the servlet a list of
the user’s favorite newsfeeds, so that navigation among their headlines is simple.

ii. The servlet should utilize project3-8.0/webapps/ROOT/xsl/view.xsl in order to

generate these pages of headlines dynamically, making use, of course, of the XML
returned by the NewsProvider class’s getHeadlines(·) method.

iii. If a user attempts to visit the servlet prior to authenticating, you should redirect the user

to the Login servlet.

iv. Any page generated by the servlet should contain a link to the Prefs servlet, which, of

course, will be implemented by you shortly!

v. Any page generated by the servlet should contain a link via which the user can log out

(e.g., the link might pass some parameter back to the servlet, instructing it to invalidate
the current session and redirect the user to the Login servlet).

Most likely, you will want to pass to view.xsl not only the XML for some newsfeed but also
the names of the user’s other favorite categories (in fulfillment of i, above). Clearly, you can
obtain the former by way of the NewsProvider class’s getHeadlines(·) method. The latter
you can obtain by way of a User object’s getNewsCategories() method. However, those
categories are returned as an instance of java.util.List, not XML. Hence, you may want
your View servlet to iterate through this List of categories, wrapping each category with some
XML start tag and corresponding end tag, concatenating the elements together to form a
String. You can then wrap those elements with a parent element (by concatenating the
String with some other start tag and end tag on either side). You can then concatenate that
result with the XML returned by getHeadlines(·) (the root of which is a moreovernews
element), thereafter encapsulating the data in a single, root element. You can then apply
view.xsl to that dynamically created String.21

21 Realize that this String’s dynamic generation is inelegant (if not an abuse of XML); we recommend it here only so
that you can focus on other aspects of the project.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 13 of 18 –

However, since the XML is in a String, you cannot utilize TrAX in the same manner that the
Login servlet does. Recall that the Login servlet applies login.xsl to dummy.xml by way of
the following code.

StreamSource xmlSource =
new StreamSource(getServletContext().getRealPath("/xml/dummy.xml"));
transformer.transform(xmlSource, new StreamResult(out));

 To apply view.xsl to a String called, say, foo (as opposed to a file), you’ll need to employ

code like the below (provided your Transformer object has already been configured with
view.xsl, just as Login.java’s Transformer object is configured with login.xsl).

 StreamSource xmlSource =
 new StreamSource(new java.io.ByteArrayInputStream(foo.getBytes()));
 transformer.transform(xmlSource, new StreamResult(out));

 Incidentally, although we’ve configured Tomcat to check the modification dates and times of

class files, you may want to restart Tomcat anytime you recompile your source.

 Okay, get to it!

8. (40 points.) Now that your View servlet is working, it’s time to enable the Prefs servlet, so

that the user can customize his or her favorite categories. While the design of this interface is
also largely up to you, we do ask that you do adhere to a few guidelines.

i. The servlet should enable the user to add newsfeeds to his or her favorites as well as

remove newsfeeds from the same. The underlying mechanism for doing so should be an
XHTML form, which should be submitted back to your Prefs servlet by way of HTTP
GET or POST. You may find that checkboxes are the most aesthetically pleasing
choice of input mechanisms. However, the servlet should not output a list of all available
newsfeeds in one, large page. Instead, we suggest that you display only one channel of
categories at a time, allowing the user to navigate among the available channels by way of
hyperlinks or forms, which submit some parameter that instructs your Prefs servlet to
display a different channel.

ii. The servlet should utilize project3-8.0/webapps/ROOT/xsl/prefs.xsl in order to

generate its pages dynamically.

iii. If a user attempts to visit the servlet prior to authenticating, you should redirect the user

to the Login servlet.

iv. Any page generated by the servlet should contain a link to the View servlet.

v. Any page generated by the servlet should contain a link via which the user can log out

(i.e., the link will pass some parameter back to the servlet, instructing it to invalidate the
current session and redirect the user to the Login servlet).

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 14 of 18 –

Again, be sure to call the UserManager class’s save() method anytime a user updates his or
her preferences. As in the View servlet, you may find it useful (if not necessary) to
concatenate an XML representation of the user’s current favorites with an XML
representation of all available categories so that the servlet is able to report simultaneously (by
way of prefs.xsl) the user’s current favorites as well as other, available categories (in, say,
some channel).

Again, although we’ve configured Tomcat to check the modification dates and times of class
files, you may want to restart Tomcat anytime you recompile your source.

 Alright, make it happen!

9. (40 points.) Pretty neat stuff, eh? By now, you’re hopefully feeling pretty good about your

application. And you should; you’ve pulled together a lot of material, a lot of skills.

 It’s time, then, to make that portal truly yours. Although we claim to have left the design of

your portal largely up to you, it was certainly our idea to have a login page, a viewing page, and
a preferences page. What functionality did we leave out, though? What would make you want
to keep that instance of Tomcat running indefinitely, your portal available 24/7?

 Go ahead and add a personal touch to your portal. It should go without saying that you’re

welcome to beautify your portal with colors and images. But we’d like you to extend your
portal’s functionality. The extension could be in the client tier. What’s lacking in your portal’s
user interface? The extension could also be in the middle tier. What feature are your servlets
missing? What servlet is missing? Or, the extension could be in the back-end tier. Right now,
your code (presumably) relies upon the copy of nested_category_list.html in
project3-8.0/webapps/ROOT/xml/cache/. What if Moreover’s offerings have been
updated since we cached that file for you? Perhaps your portal should be retrieving a fresh
listing on occasion, re-caching the results. In fact, for the sake of performance, perhaps the
NewsProvider class should be caching headlines, at least for a short while, so that it needn’t
open up a TCP socket for every request! Also, what about those DTDs? Should you be
validating your XML feeds? Why not spend time on all three tiers? Isn’t RSS all the rage these
days? Why not support feeds from other sources?

 In short, make your portal better. Feel free to discuss (but not collaborate on the

implementation of) possible extensions with other students by way of
cscie259@lists.dce.harvard.edu. You may certainly incorporate additional technologies
(e.g., JSP, XSL-FO, etc.) into your extension. We ask only that the scope of your extension be
comparable to that required by question 7 or 8; in other words, the extension should demand
of you about the same amount of time as did your Login servlet or Prefs servlet. You are
welcome (and encouraged) to run a possible extension by the staff if you’re worried that it may
fall short of our expectations.

 Once you’ve designed and implemented your extension, create in project3-8.0/ a file called

personaltouch.txt containing two or more paragraphs detailing your extension. Be sure to

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 15 of 18 –

explain what your extension is, how and in what file(s) you implemented it, and what
challenges you encountered during its implementation.

10. (2 points.) Wahoo! You’re done. Two points!

Submitting Project 3.

11. (0 points.) If you have not done your work on nice.fas.harvard.edu, transfer via SFTP

your project3-8.0/ directory from your local machine to the cscie259/ directory in your
FAS account’s home directory, taking care to upload any text files in ASCII mode.

 Next, ensure that the structure of your project3-8.0/ directory on

nice.fas.harvard.edu is the following.

project3-8.0/
 conf/
 src/
 cscie259/
 project3/
 wahoo/
 temp/
 webapps/
 ROOT/
 docs/
 cscie259/
 project3/
 wahoo/
 dtd/
 images/
 WEB-INF/
 xml/
 cache/
 xsl/

 Your project3-8.0/ directory should contain build.xml (updated, if necessary, to handle

any files of your own creation) and personaltouch.{html,pdf,ps,rtf,txt};
project3-8.0/conf/ should contain your application’s configuration files;
project3-8.0/webapps/ROOT/docs/ should contain updated Javadoc;
project3-8.0/webapps/ROOT/dtd/ should contain those DTDs it originally contained,
along with any others you might have created; project3-8.0/webapps/ROOT/images/
should contain the image it originally contained, along with any others you might have created;
project3-8.0/webapps/ROOT/WEB-INF/ should contain web.xml;
project3-8.0/src/ should contain the Java source it originally contained, along with any
additional Java source you wrote; project3-8.0/webapps/ROOT/xml/ should contain those
XML files it originally contained, along with any others you might have created; and
project3-8.0/webapps/ROOT/xsl/ should contain those XSLT files it originally contained,
along with any others you might have created.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 16 of 18 –

 Particularly if you developed on another machine, ensure that your application builds and
executes properly on nice.fas.harvard.edu.

 Once everything’s in order, clean up your workspace by executing

 ant clean

 from within your project3-8.0/ directory.22

 Finally, submit your work electronically by executing the following command from within your

project3-8.0/ directory.

 cscie259submit project3

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your

project’s successful submission. You may re-submit as many times as you’d like; each re-
submission will overwrite any previous submission. But take care not to re-submit after the
project’s deadline, as only your latest submission’s timestamp is retained.

22 Know that this command deletes not only your bytecodes but also Tomcat’s logs, runtime directories, and temporary
files.

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 17 of 18 –

Appendix

So long as your project ultimately compiles and executes on nice.fas.harvard.edu, you are
welcome to develop it on your own computer. We leave it to you to translate the commands in this

document to your own operating system’s syntax (e.g., forward slashes to backslashes, $VAR to
%VAR%, etc.). This appendix explains how to configure your computer like nice.fas.harvard.edu.

You are encouraged to discuss and troubleshoot these steps with classmates via the listserv. Some

of these steps also appeared in the specifications for Project 1 (1) and/or Project 2 (2).

JDK 5.0

1 On a PC, download Sun’s JDK 5.0 via the course’s website and install it.23 On a Mac,

download Apple’s J2SE 5.0 Release 4 via the course’s website and install it.
1 Define an environment variable called JAVA_HOME whose value is the full path to the JDK’s

directory.
1 Prepend "$JAVA_HOME/bin" to your PATH.
1 Define an environment variable called JAVA_COMPILER whose value is "NONE".
1 Create a directory in $JAVA_HOME/jre/lib/ called endorsed.
1 Prepend "./build" to your CLASSPATH.
1 Prepend "." to your CLASSPATH.

Xalan 2.7.0

1 Download Xalan 2.7.0 (i.e., xalan-j_2_7_0-bin.{tar.gz,zip}) via the course’s website

and extract it to its own directory.
1 Define an environment variable called XALAN_HOME whose value is the full path to Xalan’s

directory.
1 Place a copy of $XALAN_HOME/serializer.jar in $JAVA_HOME/jre/lib/endorsed/.
1 Place a copy of $XALAN_HOME/xalan.jar in $JAVA_HOME/jre/lib/endorsed/.
1 Place a copy of $XALAN_HOME/xercesImpl.jar in $JAVA_HOME/jre/lib/endorsed/.
1 Place a copy of $XALAN_HOME/xml-apis.jar in $JAVA_HOME/jre/lib/endorsed/.
1 Define an alias called EnvironmentCheck whose value is
 "java org.apache.xalan.xslt.EnvironmentCheck".24
1 Define an alias called xalan whose value is
 "java org.apache.xalan.xslt.Process".25

23 Sun’s installer for Windows installs both a JDK and a JRE, the latter of which effectively has higher priority in the
operating system’s PATH; Windows users may wish to uninstall this JRE via Add or Remove Programs in their Control
Panel.
24 On Windows, you can create a batch file (in any directory in your PATH) called ENVIRONMENTCHECK.BAT containing the
following two lines.

@echo off
java org.apache.xalan.xslt.EnvironmentCheck

Computer Science E-259: XML with Java, Java Servlet, and JSP
Harvard Extension School

Fall 2007

– 18 of 18 –

Ant 1.7.0

1 Download Ant 1.7.0 via the course’s website and extract it to its own directory.
1 Define an environment variable called ANT_HOME whose value is the full path to Ant’s

directory.
1 Add "$ANT_HOME/lib/ant.jar" to your CLASSPATH.
1 Add "$ANT_HOME/lib/ant-launcher.jar" to your CLASSPATH.
1 Append "$ANT_HOME/bin" to your PATH.

Tomcat 6.0.14

c Download Tomcat 6.0.14 (i.e., apache-tomcat-6.0.14.{tar.gz,zip}) via the course’s

website and extract it to its own directory.
c Define an environment variable called CATALINA_HOME whose value is the full path to

Tomcat’s directory.
c Define an environment variable called CATALINA_BASE whose value is ".".
c Add "$CATALINA_HOME/bin/bootstrap.jar" to your CLASSPATH.
c Add "$CATALINA_HOME/lib/servlet-api.jar" to your CLASSPATH.
c Create a directory in $CATALINA_HOME/ called endorsed.
c Place a copy of $XALAN_HOME/serializer.jar in $CATALINA_HOME/endorsed/.
c Place a copy of $XALAN_HOME/xalan.jar in $CATALINA_HOME/endorsed/.
c Place a copy of $XALAN_HOME/xercesImpl.jar in $CATALINA_HOME/endorsed/.
c Place a copy of $XALAN_HOME/xml-apis.jar in $CATALINA_HOME/endorsed/.
c Define an alias called tomcat whose value is
 "$CATALINA_HOME/bin/catalina.sh run".26

25 On Windows, you can create a batch file (in any directory in your PATH) called XALAN.BAT containing the following
seven lines.

@echo off
:rep
shift
set args=%args% %0
if not !%1==! goto rep
java org.apache.xalan.xslt.Process %args%
set args=

26 On Windows, you can create a batch file (in any directory in your PATH) called TOMCAT.BAT containing the following
two lines.

@echo off
"%CATALINA_HOME%"\BIN\CATALINA.BAT run

