
1

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259
XML with Java

Lecture 2: XML 1.1 and SAX 2.0.2

24 September 2007

David J. Malan

malan@post.harvard.edu

2

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259
Last Time

Computer Science E-259
J2EE
XML

What
Who
When
How
Why

Computer Science E-259

3

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259
This Time

XML 1.1
SAX 2.0.2
JAXP 1.3 and Xerces 2.7.1 (2.9.1)
Parsing
My First XML Parser

4

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
A Representative Document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE students SYSTEM "student.dtd">

<!-- This is an XML document that describes students -->
<?studentdb displaydesc="true"?>
<students>

<student id="0001">
<name>Jim Bob</name>
<status>graduate</status>
<dorm/>
<major>Computer Science & Music</major>
<description>

<![CDATA[<h1>Jim Bob!</h1>
Hi my name is jim. I look like
]]>

</description>
</student>
<student id="0002">

...
</student>

</students>

5

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
XML Declaration

Optional
Must appear at the very top of an XML document
Used to indicate the version of the specification to which
the document conforms (and whether the document is
“standalone”)
Used to indicate the character encoding of the document

UTF-8
UTF-16
iso-8859-1
…

<?xml version="1.0" encoding="UTF-8"?>

6

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
DOCTYPE

References a Document Type Definition (DTD)
Can refer to an external DTD file or include some DTD
information within the tag itself
DTD is the original mechanism for specifying the schema
of an XML document

Inherited in part from SGML
Arcane syntax
Limited expressive functionality

More in Lecture 8...

<!DOCTYPE students SYSTEM "students.dtd">

7

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Elements

Main structure in an XML document
Only one root element allowed
Start Tag

Allows specification of zero or more attributes
<student id="0001" ...>

End Tag
Must match name, case, and nesting level of start tag
</student>

Name must start with letter or underscore and can contain
only letters, numbers, hyphens, periods, and underscores

<name>Jim Bob</name>

8

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Element

Element Content
<student>

<status>...</status>

</student>

Parsed Character Data (aka PCDATA, aka Text)
<name>Jim Bob</name>

Mixed Content
<name>Jim <initial>J</initial> Bob</name>

No Content
<dorm/>

9

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Attributes

Name
Must start with letter or underscore and can contain
only letters, numbers, hyphens, periods, and
underscores

Value
Can be of several types, but is almost always a string
Must be quoted

title="Lecture 2"

match='item="baseball bat"'

Cannot contain < or & (by itself)

<student id="0001">

10

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
PCDATA

Text that appears as the content of an element
Can reference entities
Cannot contain < or & (by itself)

Jim Bob

11

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Entities

Used to “escape” content or include content that is hard to
enter or repeated frequently

Somewhat like macros
Five pre-defined entities

& < > ' "

Character entities can refer to a single character by
unicode number

e.g., © is ©

Must be declared to be legal
<!ENTITY nbsp " ">

Cannot refer to themselves

&

12

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
CDATA

Parsed in “one chunk” by the XML parser
Data within is not checked for subelements, entities, etc.
Allows you to include badly formed markup or character
data that would cause a problem during parsing
Examples

Including HTML tags in an XML document
Used in XSLT to write out non-XML text

<![CDATA[<h1>Jim Bob!</h1> ...]]>

13

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Comments <!-- This is ... -->

Can include any text inside a comment to make it easier
for human readers to understand your document
Generally not available to applications reading the
document
Always begin with <!-- and end with -->
Cannot contain --

14

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

XML 1.1
Processing Instructions <?studentdb displaydesc="true"?>

“Sticky notes” to applications processing an XML document that
explain how to handle content
The target portion (e.g., studentdb) of a PI indicates the
application that is to process this instruction; cannot start with
“xml”
The remainder of the PI can be any text that gives instructions to
the application
Examples

Instructions to an application to display different versions of
an image
Instructions to an application to suppress display of certain
content
...

15

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

SAX 2.0.2
A Sample Document

<students>

<student id="0001"
</students>

/>

16

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

SAX 2.0.2
Event-Based Parsing

Document

<students

student id="0001"
/students>

ContentHandler

startElement("students", {
characters("\n ");

endElement("student");
startElement("student", {

endElement("students");

/>

startDocument();

endDocument();

>

<

});

("id", "0001")};

characters("\n");

<

17

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

JAXP 1.3 and Xerces 2.7.1
SAXDemo

javax.xml.parsers.SAXParserFactory
javax.xml.parsers.SAXParser

org.xml.sax.*
org.xml.sax.helpers.*

...

18

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Parsing
Definition

In linguistics, to divide language into small components
that can be analyzed. For example, parsing this sentence
would involve dividing it into words and phrases and
identifying the type of each component (e.g., verb,
adjective, or noun)
For XML, parsing means reading an XML document,
identifying the various components, and making it
available to an application

19

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Parsing
Grammars in Backus-Naur Form

In order to parse a document, you need to be able to
specify exactly what it contains
XML specification does this for XML using a grammar in
Backus-Naur Form (BNF)
A grammar describes a language through a series of rules

A rule describes how to produce a something
(e.g., a start tag) by assembling characters and other
non-terminal symbols
Made up of

non-terminal symbols
terminal symbols (data that is taken literally)

20

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Parsing
Arithmetic

A grammar for arithmetic equations
Eqn ::= Term '=' Term

Term ::= '(' Term Op Term ')' | Value

Op ::= '+' | '-' | '/' | '*'

Value ::= <any number>

Produces
(4 + 3) = 7
(1 + 2) = (3 – 0)
((10 / 2) + 1) = (3 * 2)
4 = 5
...

21

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Parsing
XML

A (much simplified) grammar for XML

element ::= STag content Etag

content ::= (element | CharData)*

STag ::= '<' Name '>'

ETag ::= '<' '/' Name '>'

where Name is one or more characters excluding > and
CharData is zero or more characters excluding <.

22

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

My First XML Parser
Tokenizing and Recognizing

Tokenizing
Creates tokens from the character stream
Element name, equal sign, start tag

Recognizing
Understands the syntax of the document and checks for
correctness
Builds a syntax tree

In mf.XMLParser, there will be no clear distinction between
tokenizing and recognizing

23

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

My First XML Parser
Recursive Descent Parsing

XML's grammar works well with a parsing technique known
as recursive descent parsing
Basically:

You write a function that is responsible for parsing
every non-terminal in the grammar
You assume that the document matches the grammar
The correct alternation in a rule can be determined by
examining a few tell-tale starting characters
(lookahead)
You recursively parse the document, calling each non-
terminal parsing function as dictated by the grammar
Use exception handling to handle errors when they
occur deep in the recursive call tree

24

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

My First XML Parser
Source Code

cscie259.project1.mf.*

25

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259
Next Time

The SAX API has a number of important advantages…
You can write very fast SAX parsers

No memory to allocate, data structures to link
“Fire and forget”

It is useful for large documents
Loading the whole document into memory is
prohibitive

It is easy to use
…but it doesn't solve every problem

Need to have an internal data structure for some
applications
To follow links in information (especially backwards
ones)
To perform operations that require having multiple
pieces of the document at the same time

Enter the Document Object Model (DOM)…

26

Copyright © 2007, David J. Malan <malan@post.harvard.edu>. All Rights Reserved.

Computer Science E-259
XML with Java

Lecture 2: XML 1.1 and SAX 2.0.2

24 September 2007

David J. Malan

malan@post.harvard.edu

